First meeting of Project IODISSEE

Chang YANG

Laboratoire Paul Painlevé
Université de sciences et technologies de Lille

and
Equipe SIMPAF de l'INRIA Lille
11,12 January, 2010

Etucational History

- Undergraduate Study
- 2002-2006 at Wuhan University, China
- Major in Mathematics and Applied Mathematics Minor in Computer Science and Technology
- Graduate Study
- 2006-2008 at Université de sciences et technologies de Lille, France
- Major in Applied Mathematics
- Master's Thesis concerning Image Enhancement and Noise Removal Problems under the guidance of Christophe BESSE
- PhD Study
- 2008- at Université de sciences et technologies de Lille, France
- Subject: Models and Numerical schemes for effect of the ionospheric perturbations in earth-satellite communications under the guidance of Christophe BESSE

Summary of my work from September 2008 to December 2009
 The Asymptotic Preserving Scheme

We consider a two dimensional elliptic equation presenting large anisotropies:

$$
\left\{\begin{array}{l}
-\nabla \cdot(\mathbb{A} \nabla \phi)=f \\
\frac{\partial \phi}{\partial z}=0 \text { on } \partial \Omega_{z} \\
\phi=0 \text { on } \partial \Omega_{x}
\end{array}\right.
$$

with

$$
\mathbb{A}=\left(\begin{array}{cc}
A_{\perp} & 0 \\
0 & \frac{1}{\varepsilon} A_{z}
\end{array}\right)
$$

where A_{\perp} and A_{z} are functions of the (x, z) coordinates with comparable order of magnitudes.

Summary of my work from September 2008 to December 2009
 The Asymptotic Preserving Scheme

- First Task: Constant $\varepsilon \ll 1$
- Passing $\varepsilon \rightarrow 0$ leads a ill-posed problem
- Decomposing ϕ to $\bar{\phi}+\phi^{\prime}$ gives a mean equation, a fluctuation equation and a constraint $\overline{\phi^{\prime}}=0$ called Asymptotic preserving Scheme which is well-posed independently on ε
- Second Task: Functional ε In the pratical case, the parameter ε depends on the coordinates, thus we should change slightly our AP scheme

Summary of my work from September 2008 to December 2009

The Dynamo Model in Ionosphere

A commonly used model in ionospheric plasma modeling is the 'Dynamo' model which can be written in 2 parts:

3-dimensional Transport Equation

$$
\begin{aligned}
& \frac{\partial w}{\partial t}+\nabla \cdot(v w)=0 \\
& v_{\alpha}=\frac{u_{i \alpha}}{r \sin \varphi}, v_{\beta}=r \sin \varphi|B| u_{i \beta}, v_{\gamma}=|B| u_{i \gamma} \\
& \text { where } w=\frac{\rho}{|B|^{2}}
\end{aligned}
$$

Summary of my work from September 2008 to December 2009

The Dynamo Model in Ionosphere

3-dimensional Elliptic Equation

$$
-\nabla \cdot(\mathbb{A} \nabla \phi)=-\nabla \cdot J_{n}
$$

where ϕ is the electric potential,

$$
\begin{gathered}
\mathbb{A}=\left(\begin{array}{ccc}
\mathcal{A} & -\mathcal{D} & 0 \\
\mathcal{D} & \mathcal{B} & 0 \\
0 & 0 & \mathcal{C}
\end{array}\right) \\
\mathcal{A}=\frac{\rho\left(\mu_{i}^{P}+\mu_{e}^{P}\right)}{r^{2} \sin ^{2} \varphi|B|^{2}}, \mathcal{B}=\rho\left(\mu_{i}^{P}+\mu_{e}^{P}\right) r^{2} \sin ^{2} \varphi \\
\mathcal{C}=\rho\left(\mu_{e}^{\|}+\mu_{i}^{\|}\right), \mathcal{D}=\rho\left(\mu_{i}^{H}-\mu_{e}^{H}\right) /|\boldsymbol{B}|
\end{gathered}
$$

Summary of my work from September 2008 to December 2009
 The Dynamo Model in Ionosphere

Here, the 3-dimensional elliptic equation is an anisotopic problem since $\frac{\mathcal{A}}{\mathcal{C}}$ and $\frac{\mathcal{B}}{\mathcal{C}}$ vary from 10^{-2} to 10^{-14}. Thus we try the two following methods

- Searching for the limit model: Striation Model
- easy to archieve
- work only in ambient ionosphere
- Applying the AP scheme to 3-dimensional Dynamo model

