IODISSEE : Méthodes numériques

Christophe Besse, Pierre Degond, Chang Yang, <u>Fabrice Deluzet</u>, Pauline Laffite, Alexei Lozinski, Claudia Negulescu

11-12 Janvier 2010

<ロト <回ト < 注入 < 注ト < 注ト = 注

Fabrice Deluzet

Cursus universitaire

- Ingénieur en mathématiques appliquées et modélisation
- Thése : Modélisation mathématique et simulation numérique de commutateurs d'ouverture à plasma

Cursus professionel

- Ingénieur de Recherche CNRS en poste depuis 1999 à l'IMT. Spécialité : Calcul scientifique.
- Plasmas ionosphériques.
- Développement de schémas préservant l'asymptotique dans différentes limites
 - Iimites quasi-neutes pour des modèles fluides et cinétiques,
 - méthodes pour les milieux fortement anisotropes.
- Méthodes multi-échelles (propagation de polluants en milieux urbains, réseaux électriques).

Motivations de l'étude

< ∃ →

э

Plan de l'exposé

2 Modélisation

- Études du modèle Striations
- 4 Le modèle Dynamo-3D

5 Perspectives

Motivations de l'étude

L'environnement terrestre

Fig. 1: Stratification de l'atmosphère.

- L'atmosphère est stratifiée et ionisée,
- L'ionosphère est caractérisée
 - par des altitudes de 90 à 1500 kilomètres,
 - une densité de neutres très supérieure à celle du plasma,
 - un pic de densité de plasma à ~ 300 km d'environ 10⁶ cm⁻³.

伺下 イヨト イヨト

э

Motivations de l'étude

Propriétés de l'ionosphère

Fig. 2: Transmission des ondes radios et intérations avec l'ionosphère.

L'ionosphére :

- réfléchit les ondes basses fréquences
- transmet les ondes hautes fréquences,
- est soumise à des nombreuses instabilités (erruptions solaires, striations, ...).

∃ → (∃ →

э

Striations : instabilités du plasma ionosphérique se produisant le long des lignes du champ magnétique terrestre.

Motivations de l'étude

Formations des striations

Évolution d'une bulle de plasma à une altitude de 300 km.

La bulle de plasma est étirée le long des lignes de champ magnétique. Dans un plan orthoghonal au champ magnétique le plasma est soumis à une instabilité en $E \times B$.

Fig. 3: Formation des striations.

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

.∋...>

Plan de l'exposé

2 Modélisation

- L'effet dynamo
- Le système Euleur-Maxwell
- Une hiérarchie de modèle
- La hiérarchie Dynamo
- Études du modèle Striations
- 4 Le modèle Dynamo-3D

5 Perspectives

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Basse altitude. Forte densité de neutres.

Fig. 4: L'effet dynamo.

Le modèle :

- équations de Maxwell,
- équations d'Euleur et collisions avec les neutres.

Hypothèses simplificatrices :

- une seule espèce d'ions O⁺,
- pas de réactions chimiques,
- collisions ions-électrons et effets de la gravité négligés.

4 E 5

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

ъ.

Notations

n _e , n _i	densités electronique et ionique	
U _e , U _i	vitesses électroniqus et ionique	
U _n	vitesse des neutres	
P _e , P _i	pressions ionique et électronique	
ν_e, ν_i	fréquences de collision électrons-neutres ions-neutres	
m _e , m _i	masses des électrons et des ions	
$j = e(n_i u_i - n_e u_e)$	densité de courant	
$\rho_{c} = e(n_{i} - n_{e})$	densité de charge	

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le système d'Euler-Maxwell

Maxwell

$$\begin{aligned} &\frac{1}{c^2}\partial_t E - \nabla \times B = -\mu_0 j, \\ &\partial_t B + \nabla \times E = 0, \\ &\nabla \cdot E = \rho_c / \varepsilon_0, \\ &\nabla \cdot B = 0, \\ &\rho_c = q(n_i - n_e), \quad j = q(n_i u_i - n_e u_e). \end{aligned}$$

Avec l'opérateur de transport : $\mathcal{L}_{u}(\rho) = \partial_{t}\rho + \nabla \cdot (\rho u) ,$ et les forces de friction : $F_{e} = -\nu_{e}m_{e}(u_{e} - u_{n}) ,$ $F_{i} = -\nu_{i}m_{i}(u_{i} - u_{n}) .$

< ∃ >

э

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

< ∃ →

э

Ordres de grandeurs caractérisitques

Paramètra Physique	Ordre de	Paramètre	Valeur typique	
Farametre Filysique	grandeur	adimensionné		
Temps	Ŧ	$t' = t/\overline{t}$	10 ³ s	
Longueur	x	$x' = x/\bar{x}$	10 ⁵ m	
Vitesse	$\bar{u} = \bar{x}/\bar{t}$	$u'_{e,i,n} = u_{e,i,n}/\overline{u}$	$10^{2} {\rm \ ms^{-1}}$	
Densité	n	$n'_{e,i} = n_{e,i}/\bar{n}$	$10^{12} 10^{15} \mathrm{m^{-3}}$	
Champ magnétique	Ē	$B' = B/\bar{B}$	10^{-5} T	
Champ électrique	$\overline{E} = \overline{u}\overline{B}$	$E' = E/\bar{E}$	$10^{-3} \ {\rm Vm^{-1}}$	
Fréq. de collisions e-n	$\bar{\nu}_e$	$\nu'_e = \nu_e / \bar{\nu}_e$	$10^2 {\rm s}^{-1}$	
Fréq. de collisions i-n	$\bar{\nu}_i = \frac{m_e}{m_i} \bar{\nu}_e$	$ u_i' = u_i / \bar{ u}_i $	10^{-2} s^{-1}	

Écriture des équations en variables adimensionnées

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

きょうきょう

Paramètres d'adimensionnement

- L'adimensionnement introduit des paramètres sans dimension :
 - β intensité relativement au champ magnétique ambiant du champ magnétique induit,
 - κ nombre de collisions e-n i-n pendant une période cyclotron,
 - ε rapport des masses électronique et ionique,
 - α rapport de la vitesse caractéristique à la vitesse de la lumière,
 - au rapport du temps moyen entre deux collisions ions-neutres et du temps caractéristique,
 - η mesure de l'énergie thermique.

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le système Euler-Maxwell adimensionné

Équations d'Euler

$$\begin{aligned} \partial_t n_e + \nabla \cdot (n_e u_e) &= 0, \\ \tau \varepsilon \left(\mathcal{L}_{u_e}(n_e u_{ek}) \right) &= -\eta \partial_{x_k} P_e - \kappa^{-1} \underbrace{n_e(E_k + (u_e \times B)_k)}_{\text{Lorentz}} - \underbrace{\nu_e n_e(u_{ek} - u_{nk})}_{\text{Ve} n_e(u_{ek} - u_{nk})}, \\ \partial_t n_i + \nabla \cdot (n_i u_i) &= 0, \\ \tau \left(\mathcal{L}_{u_i}(n_i u_{ik}) \right) &= -\eta \partial_{x_k} P_i + \kappa^{-1} n_i (E_k + (u_i \times B)_k) - \nu_i n_i (u_{ik} - u_{nk}), \end{aligned}$$

Maxwell

$$\begin{aligned} \alpha \partial_t E - \nabla \times B &= -\beta j, \\ \partial_t B + \nabla \times E &= 0, \\ \frac{\kappa \alpha}{\beta} \nabla \cdot E &= \rho_c, \\ \nabla \cdot B &= 0, \\ \rho_c &= n_i - n_e, \quad \kappa j = n_i u_i - n_e u_e. \end{aligned}$$

Valeurs caractérisitiques des paramètres pour $n_{i,e} = 10^{12} |10^{15} m^{-3}|$

$$\begin{array}{ll} \varepsilon = 10^{-4}, & \tau = 10^{-1}, \\ \eta = 10^{1}, & \kappa = 10^{-4} \\ \alpha = 10^{-12}, & \beta = 10^{-5} | 10^{-2} \end{array}$$

(B)

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le système Euler-Maxwell adimensionné

Équations d'Euler

$$\begin{aligned} \partial_t n_e + \nabla \cdot (n_e u_e) &= 0, \\ \tau \varepsilon \left(\mathcal{L}_{u_e}(n_e u_{ek}) \right) &= -\eta \partial_{x_k} P_e - \kappa^{-1} n_e (E_k + (u_e \times B)_k) - \nu_e n_e (u_{ek} - u_{nk}), \\ \partial_t n_i + \nabla \cdot (n_i u_i) &= 0, \\ \tau \left(\mathcal{L}_{u_i}(n_i u_{ik}) \right) &= -\eta \partial_{x_k} P_i + \kappa^{-1} n_i (E_k + (u_i \times B)_k) - \nu_i n_i (u_{ik} - u_{nk}), \end{aligned}$$

Maxwell

$$\begin{aligned} \alpha \partial_t E - \nabla \times B &= -\beta j, \\ \partial_t B + \nabla \times E &= 0, \\ \frac{\kappa \alpha}{\beta} \nabla \cdot E &= \rho_c, \\ \nabla \cdot B &= 0, \\ \rho_c &= n_i - n_e, \quad \kappa j = n_i u_i - n_e u_e. \end{aligned}$$

Valeurs caractérisitiques des paramètres pour $n_{i,e} = 10^{12} |10^{15} m^{-3}|$

$$\begin{array}{ll} \varepsilon = 10^{-4}, & \tau = 10^{-1}, \\ \eta = 10^{1}, & \kappa = 10^{-4} \\ \alpha = 10^{-12}, & \beta = 10^{-5} | 10^{-2}. \end{array}$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le système Euler-Maxwell adimensionné

Équations d'Euler

$$\partial_t n_e + \nabla \cdot (n_e u_e) = 0,$$

$$0 = -\eta \partial_{x_k} P_e - \kappa^{-1} n_e (E_k + (u_e \times B)_k) - \nu_e n_e (u_{ek} - u_{nk}),$$

$$\partial_t n_i + \nabla \cdot (n_i u_i) = 0,$$

$$\tau (\mathcal{L}_{u_i}(n_i u_{ik})) = -\eta \partial_{x_k} P_i + \kappa^{-1} n_i (E_k + (u_i \times B)_k) - \nu_i n_i (u_{ik} - u_{nk}),$$

Maxwell

$$\begin{aligned} \alpha \partial_t E - \nabla \times B &= -\beta j, \\ \partial_t B + \nabla \times E &= 0, \\ \frac{\kappa \alpha}{\beta} \nabla \cdot E &= \rho_c, \\ \nabla \cdot B &= 0, \\ \rho_c &= n_i - n_e, \quad \kappa j = n_i u_i - n_e u_e. \end{aligned}$$

Valeurs caractérisitiques des paramètres pour $n_{i,e} = 10^{12} |10^{15} m^{-3}|$

$$\begin{array}{ll} \varepsilon = 10^{-4}, & \tau = 10^{-1}, \\ \eta = 10^{1}, & \kappa = 10^{-4} \\ \alpha = 10^{-12}, & \beta = 10^{-5} | 10^{-2}. \end{array}$$

프 문 문 프 문

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le système Euler-Maxwell adimensionné

Équations d'Euler

$$\partial_t n_e + \nabla \cdot (n_e u_e) = 0,$$

$$0 = -\eta \partial_{x_k} P_e - \kappa^{-1} n_e (E_k + (u_e \times B)_k) - \nu_e n_e (u_{ek} - u_{nk}),$$

$$\partial_t n_i + \nabla \cdot (n_i u_i) = 0,$$

$$\tau (\mathcal{L}_{u_i}(n_i u_{ik})) = -\eta \partial_{x_k} P_i + \kappa^{-1} n_i (E_k + (u_i \times B)_k) - \nu_i n_i (u_{ik} - u_{nk}),$$

Maxwell

$$\begin{aligned} -\nabla \times B &= -\beta j, \\ \partial_t B + \nabla \times E &= 0, \\ 0 &= \rho_c, \Rightarrow \text{quasineutralite} \\ \nabla \cdot B &= 0, \\ \rho_c &= n_i - n_e, \quad \kappa j = n_i u_i - n_e u_e. \end{aligned}$$

Valeurs caractérisitiques des paramètres pour $n_{i,e} = 10^{12} |10^{15} m^{-3}|$

$$\begin{array}{ll} \varepsilon = 10^{-4}, & \tau = 10^{-1}, \\ \eta = 10^{1}, & \kappa = 10^{-4} \\ \alpha = 10^{-12}, & \beta = 10^{-5} | 10^{-2}. \end{array}$$

< ∃ >

э

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

글 > 글

Fig. 5: Hiérarchie des modèles

- Hiérarchie Dynamo : densité de plasma standard,
- 🖙 Hiérarchie MHD : densité importante de plasma.

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le modèle Dynamo-3D

- so plasma quasi-neutre : $n = n_e = n_i$,
- B est réduit au champ magnétique terrestre,
- sur l'échelle de temps caractéristique, $\partial B/\partial t = 0$,

$\partial_t n + \nabla \cdot (nu_i) = 0,$	1
$u_e = \mathbb{M}_e(-E + \kappa \nu_e u_n),$	
$u_i = \mathbb{M}_i(E + \kappa \nu_i u_n),$	
$E = -\nabla \phi,$	
$ abla \cdot j = 0,$	
$\kappa j = n(u_i - u_e),$	ļ

$$\mathbb{M}_{e} = \begin{pmatrix} \mu_{e}^{P} & -\mu_{e}^{H} & 0\\ \mu_{e}^{H} & \mu_{e}^{P} & 0\\ 0 & 0 & \mu_{e}^{\parallel} \end{pmatrix},$$
$$\mathbb{M}_{i} = \begin{pmatrix} \mu_{i}^{P} & \mu_{i}^{H} & 0\\ -\mu_{i}^{H} & \mu_{i}^{P} & 0\\ 0 & 0 & \mu_{i}^{\parallel} \end{pmatrix},$$

avec

$$\mu_{e,i}^{P} = \frac{\kappa \nu_{e,i}}{(\kappa \nu_{e,i})^{2} + |B|^{2}}, \quad \mu_{e,i}^{H} = \frac{|B|}{(\kappa \nu_{e,i})^{2} + |B|^{2}}, \quad \mu_{e,i}^{\parallel} = \frac{1}{\kappa \nu_{e,i}}.$$

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Construction du modèle Striations

Hypothèses :

- le champ magnétique est constant et orienté suivant z,
- ${}^{\hbox{\tiny \mbox{\tiny CON}}}$ conductivité alignée infinie : $\kappa \to {\rm 0},$
- la composante du courant alignée s'annule sur les bords du domaine en z (reconnection avec l'atmosphère neutre).

Propriétés :

- le potentiel électrique ne dépend que des coordonnées perpendiculaire (x⊥),
- équation elliptique intégrée sur les lignes de champ : probléme bidimensionnel.

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

→ < ∃→

Le modèle Striations multicouche (variables adimensionnées)

$$\begin{split} &\frac{\partial n}{\partial t} + \nabla \cdot (nu) = 0 \\ &u = \frac{E \times B}{|B|^2} + \left(\left(u_n - \eta \frac{\nabla p}{n} \right) \cdot \frac{B}{|B|} \right) \frac{B}{|B|}; \quad E = -\nabla_\perp \phi(x_\perp) \\ &\nabla_\perp \cdot J_\perp = 0, \\ &J_\perp = \frac{1}{|B|^2} \left(-\sigma(x_\perp) \nabla_\perp \phi + U_n \times B - \eta \nabla_\perp P_\perp \times B \right), \\ &\sigma(x_\perp) = \int n\nu \, dz, \quad U_n = \int n\nu u_n \, dz, \quad P_\perp = \int P(n) dz. \end{split}$$

σ/|B|² : conductivité de Pedersen intégrée sur une ligne de champ,
équation de transport 3D, équation elliptique 2D.

L'effet dynamo Le système Euleur-Maxwell Une hiérarchie de modèle La hiérarchie Dynamo

Le modèle Striations monocouche (variables adimensionnées)

Hypothèses :

sont toutes les quantités ne dépendent que de x_{\perp} ,

$$\square$$
 $u_{nz} = 0$ et $\nabla P = 0$,

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (nu) &= 0\\ - \nabla \left(\frac{n}{|B|^2} \nabla \phi \right) &= -\nabla \cdot \left(n \frac{u_n \times B}{|B|^2} \right) ,\\ u &= -\frac{E \times B}{|B|^2} ,\\ E &= -\nabla \phi . \end{aligned}$$

< 🗇 🕨

< ∃⇒

э

Plan de l'exposé

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

< ∃ →

э

1 Contexte physique, motivations

2 Modélisation

Études du modèle Striations

- Le modèle Striations en champ magnétique non uniforme
- Les limites du modèle Striations

4 Le modèle Dynamo-3D

5 Perspectives

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Introduction d'un système de coordonnées curvilignes

Fig. 6: Tube de champ magnétique en géométrie cartésienne.

Extension à un champ magnétique dipolaire :

- schamp axisymétrique : $B = (B_r(r, z), 0, B_z(r, z), (r, \theta, z)$ étant les coordonnées cylindriques ;
- introduction des potentiels d'Euler :

$$abla \cdot B =
abla \times B = 0 \Rightarrow \exists \beta(r, z), \gamma(r, z) \text{ tels que}$$

$$B = -\nabla \gamma = (\nabla^{\perp} \beta),$$

프 문 문 프 문

les lignes de champ magnétique correspondent à $(\alpha, \beta) = \text{constant.}$

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Introduction d'un système de coordonnées curvilignes

Fig. 7: Coordonneés curvilignes associées aux champ magnétique dipolaire.

Fig. 8: Tube de champ magnétique en géométrie curviligne.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

∃ ▶ .

Le modèle Striation en coordonnées curvilignes (variables physiques)

Le modèle Striations (sans transport aligné ni gradient de pression) $\frac{\partial n}{\partial t} + \frac{\partial}{\partial \alpha} \left(\frac{v_{i\alpha}}{r} n \right) + |B|^2 \frac{\partial}{\partial \beta} \left(\frac{r v_{i\beta}}{|B|} n \right) = 0,$ $v_{i\alpha} = r \frac{\partial \phi}{\partial \beta}, \qquad v_{i\beta} = -\frac{1}{r|B|} \frac{\partial \phi}{\partial \alpha},$ $\frac{\partial}{\partial \alpha} \left(A_{\alpha} \frac{\partial \phi}{\partial \alpha} \right) + \frac{\partial}{\partial \beta} \left(A_{\beta} \frac{\partial \phi}{\partial \beta} \right) = \frac{\partial J_{n\alpha}}{\partial \alpha} + \frac{\partial J_{n\beta}}{\partial \beta},$ $A_{\alpha} = \int_{\gamma}^{\gamma_{max}} n \kappa \frac{d\gamma}{r^2 |B|^4}, \qquad A_{\beta} = \int_{\gamma}^{\gamma_{max}} n \kappa \frac{r^2 d\gamma}{|B|^2},$ $J_{n\alpha} = -\int_{-\infty}^{\gamma_{max}} n\kappa \, u_{n\beta} \, \frac{d\gamma}{r|B|^3} \,, \qquad J_{n\beta} = \int_{-\infty}^{\gamma_{max}} n\kappa \, u_{n\alpha} \, \frac{r \, d\gamma}{|B|^2} \,,$ $\kappa = \frac{m_i}{\nu_i} + \frac{m_e}{\nu_e} \,.$

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

H 5

Environnement physique et domaine de calcul

Fig. 9: Domaine de calcul dans son contexte physique.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Le modèle Striations multi-couches

Domaine de simulation : tube de champ magnétique.

- Domaine discrétisé en plusieurs couches,
- maillage cartésien uniforme sur chaque couche.

Condition initiale :

- modèle d'ionosphère terrestre : IRI (International Reference Ionosphere),
- modèle d'atmosphère neutre : MSISE-1990 (Extended version of the Mass Spectrometer Incoherent Scatter Model).

Fig. 10: Tube de champ discrétisé.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Discrétisation en espace d'une couche

Inconnue	Localisation
n, B	
ϕ	0
$\mathbf{v}_{lpha}=\partial\phi/\partialeta$	\bigtriangleup
$\mathbf{v}_{eta} = - \partial \phi / \partial \alpha$	\bigtriangleup

3

Fig. 11: Localisation des inconnues sur maillages décalés.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

A 3 1

Discrétisation du modèle Striation

Équation de transport

- Méthode de volumes finis avec limiteur de pente (UltaBee).
- Splitting directionnel.

Calcul du champ électrique

- Schéma volumes finis pour l'équation elliptique du potentiel.
- Différences finis pour les calcul du champ électrique et de la vitesse.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Condition initiale

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

• • = • • = •

э.

État du plasma après quelques heures d'évolution

Fig. 13: Densité et vitesse du plasma après 6 h 40 d'évolution.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Enrichissement du modèle

Une fréquence de collisions ions-neutres constante n'est physiquement pas acceptable (cf Fig. 14),

Fig. 14: Fréquence de collisions ions-neutres (s^{-1}) en fonction de l'altitude (km).

프 > - + 프 >

3

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Fréquence de collisions variables

Le modèle Striations

$$\begin{split} \frac{\partial n}{\partial t} &+ \frac{\partial}{\partial \alpha} \left(\frac{v_{i\alpha}}{r} n \right) + |B|^2 \frac{\partial}{\partial \beta} \left(\frac{r v_{i\beta}}{|B|} n \right) = 0 \,, \\ v_{i\alpha} &= r \frac{\partial \phi}{\partial \beta} \,, \qquad v_{i\beta} = -\frac{1}{r|B|} \frac{\partial \phi}{\partial \alpha} \,, \\ \frac{\partial}{\partial \alpha} \left(A_{\alpha} \frac{\partial \phi}{\partial \alpha} \right) + \frac{\partial}{\partial \beta} \left(A_{\beta} \frac{\partial \phi}{\partial \beta} \right) = \frac{\partial J_{n\alpha}}{\partial \alpha} + \frac{\partial J_{n\beta}}{\partial \beta} \,, \\ A_{\alpha} &= \int_{\gamma_{\min}}^{\gamma_{\max}} n \,\kappa \, \frac{d\gamma}{r^2 |B|^4} \,, \qquad A_{\beta} = \int_{\gamma_{\min}}^{\gamma_{\max}} n \,\kappa \, \frac{r^2 \, d\gamma}{|B|^2} \,, \\ J_{n\alpha} &= -\int_{\gamma_{\min}}^{\gamma_{\max}} n \kappa \, u_{n\beta} \, \frac{d\gamma}{r|B|^3} \,, \qquad J_{n\beta} = \int_{\gamma_{\min}}^{\gamma_{\max}} n \kappa \, u_{n\alpha} \, \frac{r \, d\gamma}{|B|^2} \,, \\ \kappa_{i} &= \frac{m_{i}}{\nu_{i}} \nu_{i} \,. \end{split}$$

е

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

・ 同下 ・ 日下 ・ 日下

Fig. 15: Simulation avec une fréquence de collisions constante

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

Fig. 16: Densité de plasma avec une fréquence de collisions ions-neutres variables.

Les collisions aux basses altitudes sont très importantes : le plasma est entraîné par le vent de neutres sans développement de l'instabilité.

Le modèle Striations en champ magnétique non uniforme Les limites du modèle Striations

< ∃⇒

Fig. 17: Densité de plasma avec une fréquence de collisions ions-neutres variables.

Solution :

Restreindre le modèle Striations à son domaine de validité.

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Plan de l'exposé

- Contexte physique, motivations
- 2 Modélisation
- Études du modèle Striations

4 Le modèle Dynamo-3D

- Présentation du modèle Dynamo-3D
- Propriétés du modèle Dynamo-3D
- Difficultés numériques liées au modèle Dynamo-3D
- Un schéma « AP » pour le modèle Dynamo-3D

Perspectives

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

3

Position du modèle Dynamo-3D dans la hiérarchie

Fig. 18: Hiérarchie des modèles

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

3

Position du modèle Dynamo-3D dans la hiérarchie

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Principales hypothèses du modèle Dynamo-3D

- Solution Quasi-neutralité : $n = n_e = n_i$;
- Champ magnétique réduit au champ magnétique terrestre ;
- Solution Champ magnétique constant $\partial B/\partial t = 0$.

$\partial_t n + \nabla \cdot (nu_i) = 0,$
$u_e = \mathbb{M}_e(-E + \kappa \nu_e u_n),$
$u_i = \mathbb{M}_i(E + \kappa \nu_i u_n),$
$E = - abla \phi,$
$ abla \cdot j = 0,$
$\kappa j = n(u_i - u_e),$

$$\mathbb{M}_{e} = \begin{pmatrix} \mu_{e}^{P} & -\mu_{e}^{H} & 0\\ \mu_{e}^{H} & \mu_{e}^{P} & 0\\ 0 & 0 & \mu_{e}^{\parallel} \end{pmatrix},$$
$$\mathbb{M}_{i} = \begin{pmatrix} \mu_{i}^{P} & \mu_{i}^{H} & 0\\ -\mu_{i}^{H} & \mu_{i}^{P} & 0\\ 0 & 0 & \mu_{i}^{\parallel} \end{pmatrix},$$

avec

$$\mu_{e,i}^{P} = \frac{\kappa \nu_{e,i}}{(\kappa \nu_{e,i})^{2} + |B|^{2}}, \quad \mu_{e,i}^{H} = \frac{|B|}{(\kappa \nu_{e,i})^{2} + |B|^{2}}, \quad \mu_{e,i}^{\parallel} = \frac{1}{\kappa \nu_{e,i}}.$$

C. B., C. Y., P. D., F. D., P. L., A. L., C. N. IODISSEE : Mét

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Le modèle Dynamo-3D

Expression en géométrie cartésienne

$$\begin{split} \frac{\partial n}{\partial t} + \nabla \cdot (nu_i) &= 0 \,, \\ -\nabla \cdot \left[n \Big(\mathbb{M}_i + \mathbb{M}_e \Big) \nabla \phi \Big] &= -\nabla \cdot \left[n \mathbb{M}_i \Big(\kappa_i u_n - \frac{\nabla P_i}{e \, n} \Big) - n \mathbb{M}_e \Big(\kappa_e u_n - \frac{\nabla P_e}{e \, n} \Big) \right] \\ \phi &= 0 \, \text{sur} \, \partial \Omega_x \,, \quad \partial_y \phi = 0 \, \text{sur} \, \partial \Omega_y \,, \quad \partial_z \phi = 0 \, \text{sur} \, \partial \Omega_z \,, \\ u_i &= \mathbb{M}_i \Big(E + \kappa_i u_n - \frac{\nabla P_i}{e \, n} \Big) \,, \qquad E = -\nabla \phi \,, \\ \mu_{e,i}^P &= \frac{\kappa_{e,i}}{\kappa_{e,i}^2 + |B|^2} \,, \quad \mu_{e,i}^H &= \frac{|B|}{\kappa_{e,i}^2 + |B|^2} \,, \quad \mu_{e,i}^{\parallel} = \frac{1}{\kappa_{e,i}} \,, \quad \kappa_{e,i} = \frac{m_{e,i} \nu_{e,i}}{e} \,, \\ \mathbb{M}_e &= \begin{pmatrix} \mu_e^P & -\mu_e^H & 0 \\ \mu_e^H & \mu_e^P & 0 \\ 0 & 0 & \mu_e^{\parallel} \end{pmatrix} \,, \qquad \mathbb{M}_i = \begin{pmatrix} \mu_i^P & \mu_i^H & 0 \\ -\mu_i^H & \mu_i^P & 0 \\ 0 & 0 & \mu_i^{\parallel} \end{pmatrix} \end{split}$$

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Le modèle Dynamo-3D

Expression en géométrie cartésienne

$$\begin{split} \frac{\partial n}{\partial t} + \nabla \cdot (nu_i) &= 0 \,, \\ - \nabla \cdot \left[n \Big(\mathbb{M}_i + \mathbb{M}_e \Big) \nabla \phi \Big] &= -\nabla \cdot \left[n \mathbb{M}_i \Big(\kappa_i u_n - \frac{\nabla P_i}{e \, n} \Big) - n \mathbb{M}_e \Big(\kappa_e u_n - \frac{\nabla P_e}{e \, n} \Big) \right] \\ \phi &= 0 \, \text{sur } \partial \Omega_x \,, \quad \partial_y \phi = 0 \, \text{sur } \partial \Omega_y \,, \quad \partial_z \phi = 0 \, \text{sur } \partial \Omega_z \,, \\ u_i &= \mathbb{M}_i \Big(E + \kappa_i u_n - \frac{\nabla P_i}{e \, n} \Big) \,, \qquad E = -\nabla \phi \,, \\ \mu_{e,i}^P &= \frac{\kappa_{e,i}}{\kappa_{e,i}^2 + |B|^2} \,, \quad \mu_{e,i}^H &= \frac{|B|}{\kappa_{e,i}^2 + |B|^2} \,, \quad \mu_{e,i}^{\parallel} = \frac{1}{\kappa_{e,i}} \,, \quad \kappa_{e,i} = \frac{m_{e,i} \nu_{e,i}}{e} \,, \\ \mathbb{M}_e &= \begin{pmatrix} \mu_e^P & -\mu_e^H & 0 \\ \mu_e^H & \mu_e^P & 0 \\ 0 & 0 & \mu_e^{\parallel} \end{pmatrix} \,, \qquad \mathbb{M}_i = \begin{pmatrix} \mu_i^P & \mu_i^H & 0 \\ -\mu_i^H & \mu_i^P & 0 \\ 0 & 0 & \mu_i^{\parallel} \end{pmatrix} \end{split}$$

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Propriétés du modèle Dynamo-3D

- Le modèle Dynamo-3D s'affranchit de l'hypothèse de conductivité alignée infinie.
- Son utilisation est possible aux basses altitudes.
 - Le modèle est complétement tridimensionnel : le calcul du potentiel électrique passe par la discrétisation d'une équation elliptique en trois dimensions ;
 - ce système risque d'être mal conditionné en raison des fortes disparités des mobilités.

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

▲圖 → ▲ 臣 → ▲ 臣 → …

э

Ordre de grandeurs des mobilités

Fig. 19: Mobilités en $m^2 \cdot V^{-1} \cdot A^{-1}$ (échelle logarithme décimal).

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D Un schéma « AP » pour le modèle Dynamo-3D

Mise en évidence du mauvais conditionnement de l'équation du potentiel discrétisée

Fig. 20: Ratio des mobilités en échelle logarithme décimal.

Équation du potentiel électrique

$$-\nabla \cdot (\mathbb{M} \nabla \phi) = -\nabla \cdot J_n \, ,$$

avec

et

$$\begin{split} \boldsymbol{\mu}^{P} &= \boldsymbol{\mu}^{P}_{e} + \boldsymbol{\mu}^{P}_{i} \,, \\ \boldsymbol{\mu}^{H} &= \boldsymbol{\mu}^{H}_{e} - \boldsymbol{\mu}^{H}_{i} \,, \\ \boldsymbol{\mu}^{\parallel} &= \boldsymbol{\mu}^{\parallel}_{e} + \boldsymbol{\mu}^{\parallel}_{i} \,. \end{split}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

э

Mise en évidence du mauvais conditionnement de l'équation du potentiel discrétisée

Résolution de : $\mathcal{A}_h \phi_h = b_h$, discrétisation de $-\nabla \cdot (\mathbb{M}\nabla \phi) = b$ (+ Boundary cond.). Calcul du résidu $R = (A_h \phi_h - b_h)/b_h$ pour $b_h = 1$ (R_1) d'une part et $b_h \approx -\nabla \cdot J_n (R_J)$ d'autre part. 10² $||R_{I}||_{2}$ 10⁰ $\Theta - ||R_1||_{\infty}$ Fig. 21: Norme du Norme du résidu résidu en fonction du limiteur d'anisotropie. Solveur du système linéaire : CG+ILU, sur un maillage de $50 \times 50 \times 50$ nœuds. 10-1 10 10 10-5 10-4 10-3 10^{-2} 10-1 10 Limiteur d'anisotropie → < ∃→

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

・ 同 ト ・ ヨ ト ・ ヨ ト

Analyse de l'explosion du conditionnement

Modèle Dynamo-3D

$$\begin{aligned} -\nabla \cdot \left(\mathbb{M}\nabla\phi\right) &= -\nabla \cdot J_n \,, \ \text{dans }\Omega \,, \quad \left\{ \begin{array}{l} \phi &= 0 \ \text{sur }\partial\Omega_x \\ \partial_n \phi &= 0 \ \text{sur }\partial\Omega_y \cup \partial\Omega_z \end{array} \right. , \\ \text{vec} \qquad \mathbb{M} &= \left(\begin{array}{c} \mu^{\textbf{P}} & -\mu^{\textbf{H}} & 0 \\ \mu^{\textbf{H}} & \mu^{\textbf{P}} & 0 \\ 0 & 0 & \mu^{\parallel} \end{array} \right) \,, \qquad \mu^{\parallel} \gg \mu^{\textbf{P}}, \mu^{\textbf{H}} \,. \end{aligned}$$

Problème modèle

a

$$\begin{cases} -\partial_x (A \,\partial_x \phi^\varepsilon) - 1/\varepsilon \,\,\partial_z (B \,\partial_z \phi^\varepsilon) = f \,\, \text{dans} \,\,\Omega \,, \quad (*) \\ \phi = 0 \,\, \text{sur} \,\,\partial\Omega_x \,, \quad \partial_z \phi^\varepsilon = 0 \,\, \text{sur} \,\,\partial\Omega_z \,. \end{cases}$$

Que peut-on attendre des méthodes numériques standards?

- ^{ICF} Pour $\varepsilon \ll 1$ consistance avec $\partial_z (B \partial_z \phi^{\varepsilon}) = 0$ dans Ω avec $\partial_z \phi^{\varepsilon} = 0$ sur $\partial \Omega_z$.
- Solution Section Sect

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

・ 同 ト ・ ヨ ト ・ ヨ ト

Analyse de l'explosion du conditionnement

Modèle Dynamo-3D

$$\begin{aligned} -\nabla \cdot (\mathbb{M}\nabla\phi) &= -\nabla \cdot J_n \,, \text{ dans } \Omega \,, \quad \left\{ \begin{array}{l} \phi &= 0 \text{ sur } \partial \Omega_x \\ \partial_n \phi &= 0 \text{ sur } \partial \Omega_y \cup \partial \Omega_z \end{array} \right. \,, \\ \text{vec} \qquad & \mathbb{M} = \left(\begin{array}{c} \mu^{\textbf{P}} & -\mu^{\textbf{H}} & 0 \\ \mu^{\textbf{H}} & \mu^{\textbf{P}} & 0 \\ 0 & 0 & \mu^{\parallel} \end{array} \right) \,, \qquad \mu^{\parallel} \gg \mu^{\textbf{P}}, \mu^{\textbf{H}} \,. \end{aligned}$$

a

Problème modèle

$$\begin{cases} -\partial_x (A \partial_x \phi^{\varepsilon}) - 1/\varepsilon \ \partial_z (B \partial_z \phi^{\varepsilon}) = f \ \text{dans } \Omega, \quad (*) \\ \phi = 0 \ \text{sur } \partial\Omega_x, \quad \partial_z \phi^{\varepsilon} = 0 \ \text{sur } \partial\Omega_z. \end{cases}$$

Que peut-on attendre des méthodes numériques standards?

- $$\label{eq:point_states} \begin{split} & \mathbb{P} \text{our } \varepsilon \ll 1 \text{ consistance avec} \\ & \partial_z (B \partial_z \phi^\varepsilon) = 0 \text{ dans } \Omega \text{ avec } \partial_z \phi^\varepsilon = 0 \text{ sur } \partial \Omega_z. \end{split}$$
- Solution Section Sect

Contexte physique, motivations Modélisation Études du modèle Striations

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

・ 同 ト ・ ヨ ト ・ ヨ ト

Contexte physique, motivations Modélisation Études du modèle Striations

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

・ 同 ト ・ ヨ ト ・ ヨ ト

3D

Régime limite : limite singulière Analys $\phi^0 = \lim_{\varepsilon \to 0} \phi^{\varepsilon}$ is the solution of Modè $\partial_{x}(\bar{A}\partial_{x}\phi^{0}) = \bar{f} \text{ dans } \Omega, \quad \phi = 0 \text{ sur } \partial\Omega_{x}.$ En effet : $\mathfrak{I} = \phi^{\varepsilon}$ vérifie $-\partial_{\mathsf{x}}(\overline{A\partial_{\mathsf{x}}\phi^{\varepsilon}}) = \overline{f}$ in Ω , pour $\varepsilon > 0$, avec avec : $\overline{f} = \frac{1}{L_z} \int_0^{L_z} f(x, z) dz$. **Eq.** (*) dans la limite $\varepsilon \to 0$ donne $\partial_{\tau} \phi^0 = 0$ Problement $\begin{cases} -\partial_x (A \partial_x \phi^{\varepsilon}) - 1/\varepsilon \ \partial_z (B \partial_z \phi^{\varepsilon}) = f \ \text{dans } \Omega, \\ \phi = 0 \ \text{sur } \partial\Omega_x, \quad \partial_z \phi^{\varepsilon} = 0 \ \text{sur } \partial\Omega_z. \end{cases}$ (*) Que peut-on attendre des méthodes numériques standards? Solution $\varepsilon \ll 1$ consistance avec $\partial_{z}(B\partial_{z}\phi^{\varepsilon}) = 0$ dans Ω avec $\partial_{z}\phi^{\varepsilon} = 0$ sur $\partial\Omega_{z}$. Solution Explosion du conditionnement avec $\varepsilon \rightarrow 0$.

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Les schémas préservant l'asymptotique

Concepts généraux

- Intérêt des Schémas-AP?
 - ⊃ Consistance avec le modèle original P^{ε} pour $\varepsilon = O(1)$
 - igcolor Consistance avec le problème limite P^0 quand arepsilon
 ightarrow 0
 - \supset Stabilité uniforme / paramètre de l'asymptotique ε

- Identification du problème modèle
- Reformulation du modèle (limite singulière)
- Discrétisation implicite

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Les schémas préservant l'asymptotique

Concepts généraux

- Intérêt des Schémas-AP?
 - ⊃ Consistance avec le modèle original P^{ε} pour $\varepsilon = O(1)$
 - igcolor Consistance avec le problème limite P^0 quand arepsilon
 ightarrow 0
 - \supset Stabilité uniforme / paramètre de l'asymptotique arepsilon

- Identification du problème modèle
- Reformulation du modèle (limite singulière)
- Discrétisation implicite

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Les schémas préservant l'asymptotique

Concepts généraux

- Intérêt des Schémas-AP?
 - ⊃ Consistance avec le modèle original P^{ε} pour $\varepsilon = O(1)$
 - \bigcirc Consistance avec le problème limite P^0 quand $\varepsilon \rightarrow 0$
 - \supset Stabilité uniforme / paramètre de l'asymptotique arepsilon

- Identification du problème modèle
- Reformulation du modèle (limite singulière)
- Discrétisation implicite

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Les schémas préservant l'asymptotique

Concepts généraux

- Intérêt des Schémas-AP?
 - ⊃ Consistance avec le modèle original P^{ε} pour $\varepsilon = O(1)$
 - \bigcirc Consistance avec le problème limite P^0 quand $\varepsilon
 ightarrow 0$
 - \supset Stabilité uniforme / paramètre de l'asymptotique arepsilon

- Identification du problème modèle
- Reformulation du modèle (limite singulière)
- Discrétisation implicite

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Les schémas préservant l'asymptotique

Concepts généraux

- Intérêt des Schémas-AP?
 - ⊃ Consistance avec le modèle original P^{ε} pour $\varepsilon = O(1)$
 - \supset Consistance avec le problème limite P^0 quand arepsilon
 ightarrow 0
 - \supset Stabilité uniforme / paramètre de l'asymptotique ε

- Identification du problème modèle
- Reformulation du modèle (limite singulière)
- Discrétisation implicite

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D **Un schéma « AP » pour le modèle Dynamo-3D**

Construction du schéma AP

Décomposition « Macro-Micro »

$$\phi(x,z) = \overline{\phi}(x) + \phi'(x,z) ,$$

$$\overline{\phi} = \frac{1}{L_z} \int \phi(x,z) \, dz , \qquad \phi'(x,z) = \phi(x,z) - \overline{\phi}(x) , \quad \overline{\phi}' = \mathbf{0} ,$$

Problème reformulé

Problème elliptique de Dimension D-1 pour $ar{\phi}$

$$\partial_x(\bar{A}\partial_x\bar{\phi})=\bar{f}+\partial_x\left(\overline{A'_x\partial_x\phi'}\right)\,,\quad \bar{\phi}=0\,\,\text{sur}\,\,\partial\Omega_x\,,$$

Problème elliptique de dimension D (bien conditionné) pour ϕ'

$$\begin{aligned} &-\partial_z (A_z \partial_z \phi') - \varepsilon \partial_x (A_x \partial_x \phi') = \varepsilon f + \varepsilon \partial_x \left(A_x \partial_x \overline{\phi} \right) ,\\ &\frac{\partial_z \phi' = 0}{\phi' = 0} \quad \text{sur} \quad \Omega_x \times \partial \Omega_z , \quad \phi' = 0 \quad \text{sur} \quad \partial \Omega_x \times \Omega_z ,\\ &\overline{\phi'} = 0 , \quad \text{dans} \quad \Omega_x . \end{aligned}$$

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

Perso

Construction du schéma

Décomposition « Macro-Micro

$$\phi(x, z)$$
 $ar{\phi} = rac{1}{L_z} \int \phi(x, z) \, dz \, ,$

Problème de perturbation singulière (Dynamo-3D)

$$\begin{array}{l} & -\partial_{\boldsymbol{x}}(\boldsymbol{A}\,\partial_{\boldsymbol{x}}\phi^{\varepsilon}) - 1_{\varepsilon}\,\partial_{\boldsymbol{z}}(\boldsymbol{B}\,\partial_{\boldsymbol{z}}\phi^{\varepsilon}) = f \ \mbox{in }\Omega\,, \quad (*) \\ & \phi = 0 \ \mbox{on }\partial\Omega_{\boldsymbol{x}}\,, \quad \partial_{\boldsymbol{z}}\phi^{\varepsilon} = 0 \ \mbox{on }\partial\Omega_{\boldsymbol{z}}\,. \end{array}$$

- so Numériquement inexploitable pour $\varepsilon \ll 1$.
- 🖙 Modèle valide ∀ε

Modèle limite (Striations)

$$\partial_{\mathbf{x}}(\bar{A}\,\partial_{\mathbf{x}}\phi^{\mathbf{0}})=\bar{f}$$
 in $\Omega\,,\quad\phi=0$ on $\partial\Omega_{\mathbf{x}}$.

first conditionnement indépendant de arepsilon

🏟 Modèle valide pour $arepsilon \ll 1$

Schéma AP pour le problème de perturbation singulière (Dynamo-3D)

$$\begin{split} \partial_{\mathbf{x}} (\bar{A} \partial_{\mathbf{x}} \bar{\phi}) &= \bar{f} + \partial_{\mathbf{x}} \left(\overline{A'_{\mathbf{x}} \partial_{\mathbf{x}} \phi'} \right) , \quad \bar{\phi} = 0 \text{ sur } \partial \Omega_{\mathbf{x}} , \\ -\partial_{\mathbf{x}} (A_{\mathbf{x}} \partial_{\mathbf{x}} \phi') - \varepsilon \partial_{\mathbf{x}} (A_{\mathbf{x}} \partial_{\mathbf{x}} \phi') &= \varepsilon f + \varepsilon \partial_{\mathbf{x}} \left(A_{\mathbf{x}} \partial_{\mathbf{x}} \bar{\phi} \right) , \\ \partial_{\mathbf{x}} \phi' &= 0 \text{ sur } \Omega_{\mathbf{x}} \times \partial \Omega_{\mathbf{x}} , \quad \phi' = 0 \text{ sur } \partial \Omega_{\mathbf{x}} \times \Omega_{\mathbf{x}} , \\ \overline{\phi'} &= 0 , \text{ dans } \Omega_{\mathbf{x}} . \end{split}$$

$$\blacksquare \quad \text{Conditionnement indépendant de } \varepsilon$$

∞ Modèle valide ∀ε

Pers

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

Construction du schéma

Décomposition « Macro-Micro

$$\phi(x, z)$$
 $\bar{\phi} = rac{1}{L_z} \int \phi(x, z) \, dz \, ,$

Problème de perturbation singulière (Dynamo-3D)

$$\begin{bmatrix} -\partial_{\mathbf{x}} (\mathbf{A} \partial_{\mathbf{x}} \phi^{\varepsilon}) - 1_{\varepsilon} \partial_{\mathbf{z}} (\mathbf{B} \partial_{\mathbf{z}} \phi^{\varepsilon}) = \mathbf{f} \text{ in } \Omega, \quad (*) \\ \phi = \mathbf{0} \text{ on } \partial\Omega_{\mathbf{x}}, \quad \partial_{\mathbf{z}} \phi^{\varepsilon} = \mathbf{0} \text{ on } \partial\Omega_{\mathbf{z}}. \end{bmatrix}$$

 ${\ensuremath{\,{\scriptscriptstyle \ensuremath{\, \rm \tiny N}}}}$ Numériquement inexploitable pour $\varepsilon \ll 1.$

 \bowtie Modèle valide $\forall \epsilon$

Modèle limite (Striations)

$$\partial_{\mathbf{x}}(\bar{A}\,\partial_{\mathbf{x}}\phi^{\mathbf{0}}) = \bar{f} \text{ in } \Omega, \quad \phi = 0 \text{ on } \partial\Omega_{\mathbf{x}}.$$

Conditionnement indépendant de ε

뺵 Modèle valide pour $arepsilon\ll 1$

Schéma AP pour le problème de perturbation singulière (Dynamo-3D)

$$\begin{split} \partial_x (\bar{A}\partial_x \bar{\phi}) &= \bar{f} + \partial_x \left(\overline{A'_x \partial_x \phi'} \right) , \quad \bar{\phi} = 0 \text{ sur } \partial\Omega_x , \\ -\partial_x (A_x \partial_x \phi') - \varepsilon \partial_x (A_x \partial_x \phi') &= \varepsilon f + \varepsilon \partial_x \left(A_x \partial_x \bar{\phi} \right) , \\ \partial_x \phi' &= 0 \text{ sur } \Omega_x \times \partial\Omega_x , \quad \phi' &= 0 \text{ sur } \partial\Omega_x \times \Omega_x , \\ \overline{\phi'} &= 0 , \quad \text{dans } \Omega_x . \end{split}$$

lpha Modèle valide orallarepsilon

Pers

Ζ

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

Construction du schéma

Décomposition « Macro-Micro

$$\phi(x, \phi) = \frac{1}{L_z} \int \phi(x, z) \, dz \, ,$$

Problème de perturbation singulière (Dynamo-3D)

$$\begin{bmatrix} -\partial_{\mathbf{x}} (\mathbf{A} \partial_{\mathbf{x}} \phi^{\varepsilon}) - 1_{\varepsilon} \partial_{\mathbf{z}} (\mathbf{B} \partial_{\mathbf{z}} \phi^{\varepsilon}) = \mathbf{f} \text{ in } \Omega, \quad (*) \\ \phi = \mathbf{0} \text{ on } \partial\Omega_{\mathbf{x}}, \quad \partial_{\mathbf{z}} \phi^{\varepsilon} = \mathbf{0} \text{ on } \partial\Omega_{\mathbf{z}}. \end{bmatrix}$$

 ${\ensuremath{\,{\scriptscriptstyle \ensuremath{\, \rm \tiny N}}}}$ Numériquement inexploitable pour $\varepsilon \ll 1.$

 \bowtie Modèle valide $\forall \varepsilon$

Modèle limite (Striations)

$$\partial_{\mathbf{x}}(\bar{A}\,\partial_{\mathbf{x}}\phi^{\mathbf{0}})=\bar{f}\,\,\mathrm{in}\,\,\Omega\,,\quad\phi=0\,\,\mathrm{on}\,\,\partial\Omega_{\mathbf{x}}\,.$$

Conditionnement indépendant de ε

뺵 Modèle valide pour $arepsilon\ll 1$

Schéma AP pour le problème de perturbation singulière (Dynamo-3D)

Présentation du modèle Dynamo-3D Propriétés du modèle Dynamo-3D Difficultés numériques liées au modèle Dynamo-3D

Problème de perturbation singulière (Dynamo-3D)

$$\begin{array}{l} -\partial_{\mathbf{x}} (\mathbf{A} \partial_{\mathbf{x}} \phi^{\varepsilon}) - \frac{1}{\varepsilon} \partial_{\mathbf{z}} (\mathbf{B} \partial_{\mathbf{z}} \phi^{\varepsilon}) = \mathbf{f} \quad \text{in } \Omega \,, \\ \phi = \mathbf{0} \, \text{on} \, \partial\Omega_{\mathbf{x}} \,, \quad \partial_{\mathbf{z}} \phi^{\varepsilon} = \mathbf{0} \, \text{on} \, \partial\Omega_{\mathbf{z}} \,. \end{array}$$

- Solution Numériquement inexploitable pour $\varepsilon \ll 1$.
- \bowtie Modèle valide $\forall \varepsilon$

Modèle limite (Striations)

$$\partial_{\mathbf{x}}(\bar{A}\,\partial_{\mathbf{x}}\phi^{\mathbf{0}})=ar{f}\,\,\mathrm{in}\,\,\Omega\,,\quad\phi=0\,\,\mathrm{on}\,\,\partial\Omega_{\mathbf{x}}\,.$$

- Conditionnement indépendant de ε
- i Modèle valide pour $\varepsilon \ll 1$

Schéma AP pour le problème de perturbation singulière (Dynamo-3D)

$$\begin{aligned} \partial_{\mathbf{x}} (\bar{A} \partial_{\mathbf{x}} \bar{\phi}) &= \bar{f} + \partial_{\mathbf{x}} \left(\overline{A'_{\mathbf{x}} \partial_{\mathbf{x}} \phi'} \right) , \quad \bar{\phi} = 0 \text{ sur } \partial \Omega_{\mathbf{x}} , \\ -\partial_{\mathbf{z}} (A_{\mathbf{z}} \partial_{\mathbf{z}} \phi') - \varepsilon \partial_{\mathbf{x}} (A_{\mathbf{x}} \partial_{\mathbf{x}} \phi') &= \varepsilon f + \varepsilon \partial_{\mathbf{x}} \left(A_{\mathbf{x}} \partial_{\mathbf{x}} \overline{\phi} \right) , \\ \partial_{\mathbf{z}} \phi' &= 0 \quad \text{sur } \quad \Omega_{\mathbf{x}} \times \partial \Omega_{\mathbf{z}} , \qquad \phi' = 0 \quad \text{sur } \quad \partial \Omega_{\mathbf{x}} \times \Omega_{\mathbf{z}} \\ \overline{\phi'} &= 0 , \quad \text{dans } \quad \Omega_{\mathbf{x}} . \end{aligned}$$

- Conditionnement indépendant de ε
- is Modèle valide $\forall \varepsilon$

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Plan de l'exposé

- 1 Contexte physique, motivations
- 2 Modélisation
- Études du modèle Striations
- 4 Le modèle Dynamo-3D

5 Perspectives

- Fortes variations spatiales de l'anisotropie
- Couplage de modèles
- Passage à des coordonnées non adaptées?

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

A T >>

э

Problématique

Dans le problème modèle la rapport d'anisotropie est une constante et les variations des coefficients de diffusion sont d'ordre un. En réalité l'anisotropie présente de très fortes variations.

Quelques pistes

- Première solution basée sur une forme non conservative de l'équation.
- Utilisation de méthodes numériques de type Scharfetter-Gummel.

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Problématique :

- La résolution numérique de Dynamo-3D est très coûteuse.
- Le modèle Striations ne peut pas être utilisé dans tout le domaine.

Strategie de couplage :

- Modèle Striations pour les hautes altitudes $\Omega_S \to \phi^S$,
- Modèle Dynamo-3D pour les basses altitudes $\Omega_i \rightarrow \phi^i, i = 1, 2,$
- Conditions de raccordement $\Sigma_{i, i=1,2}$, $\phi^i |_{\Sigma_i} = \phi^S |_{\Sigma_i}$.

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Problématique :

- La résolution numérique de Dynamo-3D est très coûteuse.
- Le modèle Striations ne peut pas être utilisé dans tout le domaine.

Strategie de couplage :

- Modèle Striations pour les hautes altitudes $\Omega_S \rightarrow \phi^S$,
- Modèle Dynamo-3D pour les basses altitudes $\Omega_i \rightarrow \phi^i, i = 1, 2,$
- Conditions de raccordement $\Sigma_{i, i=1,2}$, $\phi^i |_{\Sigma_i} = \phi^S |_{\Sigma_i}$.

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Problématique :

- La résolution numérique de Dynamo-3D est très coûteuse.
- Le modèle Striations ne peut pas être utilisé dans tout le domaine.

Strategie de couplage :

- Modèle Striations pour les hautes altitudes $\Omega_S \rightarrow \phi^S$,
- Modèle Dynamo-3D pour les basses altitudes $\Omega_i \rightarrow \phi^i$, i = 1, 2,
- Conditions de raccordement $\Sigma_{i, i=1,2}$, $\phi^{i}|_{\Sigma_{i}} = \phi^{S}|_{\Sigma_{i}}$.

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Problématique :

- La résolution numérique de Dynamo-3D est très coûteuse.
- Le modèle Striations ne peut pas être utilisé dans tout le domaine.

Strategie de couplage :

- Modèle Striations pour les hautes altitudes $\Omega_S \rightarrow \phi^S$,
- Modèle Dynamo-3D pour les basses altitudes $\Omega_i \rightarrow \phi^i$, i = 1, 2,
- Conditions de raccordement $\sum_{i, i=1,2}$, $\phi^i |_{\Sigma_i} = \phi^S |_{\Sigma_i}$.

Fortes variations spatiales de l'anisotropie Couplage de modèles Passage à des coordonnées non adaptées ?

Limitations de la démarche actuelle

- La construction du système de coordonnées orthogonales n'est possible que pour des champs magnétiques bien particuliers,
- Évolution du champ magnétique B difficilement prise en compte (même avec B donné).

Schémas AP en coordonnées non adaptées

 $\bullet\,$ Formulation variationnelle avec fonctions test dans ${\cal K}$ et ${\cal K}^\perp$

$$\mathcal{K} = \{f/B \cdot \nabla f = 0\}$$

• Multiplicateurs de Lagrange pour éviter la discrétisation de \mathcal{K} et \mathcal{K}^{\perp} .

Résultats préliminaires

- S. Brull, P. Degond, F. Deluzet, M.-H. Vignal, An asymptotic Scheme for the Euler-Lorrentz system for strong magnetic field, en préparation
- P.Degond, F Deluzet, J. Narski, C. Negulescu, Numerical scheme for highly anisotropic diffusion equation with non adapted coodinate systems, en préparation